Porcelain enamels and ceramic coatings

Earlier definitions of ceramic materials usually stressed their mineral origin and the need for heat to convert them into useful form. As a consequence, only porcelain enamels and glazes were recognized as ceramic coatings until recently, when the principles of phase relations, bonding mechanisms, and crystal structure were applied to ceramic materials and to coatings made from them. In consequence, ceramic materials can now be most safely defined as solid substances that are neither metallic nor organic in nature, a definition that is somewhat more inclusive than older ones, but more accurately reflects modern scientific usage.

Most ceramics are metal oxides, or mixtures and solutions of such oxides. Certain ceramic materials, however, contain little or no oxygen. As a whole, ceramic materials are harder, more inert, and more brittle than organic or metallic substances. Most ceramic coatings are employed to exploit the first two properties while minimizing the third.

Low-Temperature Coatings

The outstanding resistance to corrosion of certain metals, notably aluminum and chromium, is attributable to the remarkable adherence of their oxide films. Aluminum does not corrode because its oxidation product, unlike that of iron, is a highly protective coating. It was once believed that some mysterious kinship between a metal and its own oxide was needed for this protection, but recent knowledge relating to the structure of metals and metal oxides has enabled metallurgists to develop alloys that form even more stable and adherent films. Methods for thickening or stabilizing these oxide coatings by heat treatment, electrolysis, or chemical reaction are widely accepted.

This article comes from what-when-how edit released