Ceramit Low Temperature Enamel Individual Colors Refills

Ceramit is a remarkably versatile decorative low temperature enamel which cures to a surface virtually equivalent to hard fired low temperature enamel. Cermitation features rich, warm colors which can also be mixed to create unique colors and shades. May be applied to any porous surface not affected by the heat of the curing cycle: metal, ceramic, porcelain, glass, rock, plastic and more. Cures to a hardness of 60 to 75 on the SWARD scale (kiln fired low temperature enamel is 65-80) in just 30-45 minutes at a maximum temperature of 250°F (120°C). Temperature controlled ovens, infrared lamps and portable electric heaters can be used for curing.

  • Non-conductive. Surfaces enameled with Ceramitation may be electroplated without affecting the color or finish
  • Can cure at room temperature
  • 2 oz bottle of opaque, fluorescent, metallic and transparent colors available

This article comes from esslinger edit released

What Is Emissivity In Thermal Imaging cameras?

To read correct temperatures, another important factor needs to be taken into account. That is a factor known as emissivity.

Emissivity is the efficiency, which an object emits infrared radiation and is highly dependent on properties of the material or object. It is a measure of the efficiency of a surface to emit thermal imaging cameras energy relative to a perfect black body source. It directly scales the intensity of the thermal imaging cameras emission and all real values are less than 1.0.

The emissivity may be highly dependent on the surface morphology, roughness, oxidation, spectral wavelength, temperature and view angle. A measurement that does not account for the real emissivity of a surface will appear “colder” than it actually is.

For agricultural applications, many organic materials and materials with very rough surfaces have emissivity values approaching 1.0. For other applications, including power line and solar cell inspection, the surface might be a highly polished glass or metal, both of which can have much lower emissivity values.

It is important for the thermal imaging cameras to be set to the correct emissivity or incorrect temperatures will be measured.

This article comes from dronezon edit released

Advantages of Porcelain Enamel Cookware

Safe

The first advantage of porcelain enamel cookware is its safety compared to teflon, cast iron and aluminium pots and pans; the teflon pans, indeed, scratch themselves after an intense use and release toxic chemical materials. Cast iron and aluminium pots, on the other hand, react with acid ingredients such as vinegar, lemon and egg yolks.

It is important to buy high quality porcelain enamel cookware, so that the coating remains always in good condition, without scratches and cracks, also after an intense use.

Nonstick

In cooking, the enamel porcelain kitchenware is ideal to prepare tasty dishes while, at the same time, helping you to stay in good shape; indeed, just a small amount of fat (butter, oil etc.) is needed to prevent food from sticking to the pan. If you are on a diet, consider buying some porcelain enamel pots that will help you to reduce cooking fats and oils!

Cooks omogeneously

Furthermore porcelain tends to distribute homogeneously the heat, allowing you to cook rapidly and efficiently. This will benefit the quality of the food you eat, by making it tender and uniformly cooked while preserving its organoleptic properties. As a result, porcelain enamel cookware is ideal for preparing meat and fish dishes.

Versatile

Chefs use porcelain enamel to cook a wide variety of different foods because, unlike most of the nonstick cookware, it can go both in the oven and in the microwave. Imagine using your porcelain enamel casserole to prepare a delicious truffle lasagna, or your enamel pot to cook creamy soups and sauces.

Easy cleaning

Another advantage of the porcelain enamel cookware is that it is easy to clean: you just need a quick wipe with a dish sponge & detergent to clean it fast and properly! The advantage is twofold: on one hand, you will be able to use less detergent and thus avoid polluting the environment; on the other hand, using less hot water will allow you to save precious money on your bills.

Durable

A porcelain enamel pot does cost more than other nonstick pots like those in aluminium or teflon, but unlike them it is an heirloom piece that you can pass on to your sons and daughters.

This article comes from dishesonly edit released

New purple-blue ceramic pigments based on CoZr4(PO4)6

Due to the outstanding stability and resistivity to dissolution agents of the compounds related to NaZr2(PO4)3 (NZP family), our attention has been focussed on CoZr4(PO4)6 and its performance as an inorganic ceramic pigment for coloration of ceramic glazes. Mixed cobalt zirconium phosphate has been prepared by a solid state reaction and a sol–gel method and was characterised (through thermal analysis, XRD, heating microscopy, SEM, VIS-spectrophotometry and lightfastness measurement) for the first time as a ceramic pigment. In order to reduce the cobalt content in the samples the series of Co1−xMgxZr4(PO4)6 (x = 0.25; 0.5) have also been prepared using a solid state reaction and were investigated with the same techniques.

It was shown that a solid state reaction provides the formation of CoZr4(PO4)6 through a three component system stage (ZrP2O7, ZrO2 and CoP2O6/Co2P2O7), when employment of the sol–gel method leads to the direct formation of a CoZr4(PO4)6 phase at lower temperatures. During further thermal treatment, with an increase of the calcination temperature up to 1200–1300 °C, an additional phase of Zr2O(PO4)2 appears in the composition. A solid state reaction can be suggested as a preferable method for achieving enhanced thermal stability of this phosphate and the substitution of Co by Mg not only helps to reduce the content of Co in the sample compositions, but also to improve their thermal characteristics.

Thus, the obtained results indicate that employment of the more complicated sol–gel method does not provide any advantages at high calcination temperatures with respect to the phase composition, thermal stability, homogeneity and particle size distribution of the obtained samples and the conventional ceramic route does not deteriorate on the basis of these parameters. An irregular change of the colour parameters was observed for the samples during the calcination and the temperature of 1300 °C and 6–12 h of soaking time were chosen for ceramic pigment synthesis. Colouring ability of the obtained samples has been analysed with two types of ceramic glazes. The mixed phosphates exhibit saturated purple-blue colour, which becomes lighter only with an increase of Mg content to x = 0.5. Enamelled samples showed excellent lightfastness and the investigated compounds can be considered as high performance inorganic ceramic pigments for coloration of ceramic glazes.

This article comes from sciencedirect edit released

Porcelain Enamel Cookware: everything You Need to Know

20190108Nowadays porcelain enamel kitchenware makes a beautiful impression in kitchens all over the word. Porcelain enamel indeed seduces both food enthusiasts and design lovers because combines performance and aesthetics. But… which is the difference between porcelain and porcelain enamel?

As many of you may know, porcelain is a type of ceramic that is composed mostly of a white clay called kaolin with the addition of feldspars, quartz, steatite and other substances. The whole compound is cooked at 1300-1400 degrees. As well as clay and glass ceramics, porcelain may be glazed or not.

The porcelain enamel cookware is made by melting the porcelain together with a stronger metal component. That’s why the enamel porcelain is characterized by high hardness and low porosity. And that’s why porcelain enamel kitchenware is at once strong, durable and lightweight.

This article comes from dishesonly edit released